clc;
clear;
% Declare symbolic variables
syms t x y z
% Input the function
f = input('Enter the function f(x,y,z): ');
% Input variable relations
x_t = input('Enter x as a function of t: ');
y_t = input('Enter y as a function of t: ');
z_t = input('Enter z as a function of t: ');
% Partial derivatives
fx = diff(f, x);
fy = diff(f, y);
fz = diff(f, z);
% Total derivative using chain rule
dfdt = subs(fx, x, x_t)*diff(x_t, t) + ...
subs(fy, y, y_t)*diff(y_t, t) + ...
subs(fz, z, z_t)*diff(z_t, t);
% Display output
disp('Total derivative df/dt = ');
disp(simplify(dfdt));
2
clc;
clear;
syms y(x)
% Enter Bernoulli equation
eqn = input('Enter the Bernoulli equation: ');
% Solve the equation
sol = dsolve(eqn);
% Display solution
disp('Solution is:');
disp(sol);
3
clc;
clear;
% Input the function
f = input('Enter the function f(x,y): ');
% Input initial conditions
x0 = input('Enter initial value of x: ');
y0 = input('Enter initial value of y: ');
h = input('Enter step size h: ');
xn = input('Enter final value of x: ');
x = x0;
y = y0;
while x < xn
k1 = h * f(x, y);
k2 = h * f(x + h/2, y + k1/2);
k3 = h * f(x + h/2, y + k2/2);
k4 = h * f(x + h, y + k3);
y = y + (k1 + 2*k2 + 2*k3 + k4)/6;
x = x + h;
end
disp('The solution using RK-4 method is:');
disp(y);