import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
# Step 1: Load iris.csv
data = pd.read_csv('iris.csv')
# Step 2: Prepare features and target
X = data.iloc[:, :-1] # all columns except last one
y = data.iloc[:, -1] # last column (species)
# Step 3: Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 4: Create and train Decision Tree Classifier
clf = DecisionTreeClassifier(criterion='entropy', max_depth=3)
clf.fit(X_train, y_train)
# Step 5: Predict on test data
y_pred = clf.predict(X_test)
# Step 6: Accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy on test data: {accuracy*100:.2f}%")
# Step 7: Visualize the tree
plt.figure(figsize=(12,8))
plot_tree(clf, filled=True, feature_names=X.columns, class_names=clf.classes_, rounded=True)
plt.show()