14 views
hi
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score
# Load example dataset
data = load_iris()
X = data.data # Features
y = data.target # Labels
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Create and train model
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
# Predict
y_pred = model.predict(X_test)
# Metrics
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Precision:", precision_score(y_test, y_pred, average="macro"))
print("Recall:", recall_score(y_test, y_pred, average="macro"))